Jul 9, 2019

Decay curve analyses in carrier lifetime measurements of p- and n-type 4H-SiC epilayers

The impacts of the ambipolar diffusion constant and surface recombination in carrier lifetime measurements of p- and n-type 4H-SiC epilayers are investigated in detail by comparing a numerical simulation based on a diffusion equation and the measurement of microwave photoconductance decay (µ-PCD) curves measured from 4H-SiC epilayers. The simulation reveals that the shapes of decay curves of excess carrier concentration in epilayers, which defines the effective carrier lifetime, are different between p- and n-type 4H-SiC under a low-level injection condition, even when the bulk lifetime and the surface recombination velocity are fixed to the same values for p- and n-type epilayers. In experiments, the shapes of the microwave photoconductance decay curves measured from p- and n-type 4H-SiC epilayers show a similar tendency to the simulation results under a low-level injection condition. This is attributed to the difference in the dependence of the ambipolar diffusion constant on the excess carrier concentration for p- and n-type 4H-SiC. The comparison of µ-PCD decay curves obtained from 50-µm-thick epilayers with different surface passivation indicates that the surface recombination velocity on the epilayer passivated with deposited SiO2 followed by NO annealing is about one order of magnitude lower than that of the epilayer passivated with the dry oxide.




Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

No comments:

Post a Comment