The potential non-equivalent defects in both 3C- and 4H-SiC are classified by a new method that is based on symmetry considerations. In 4H-SiC their number is considerably higher than in 3C-SiC, since the hexagonal symmetry leads to diversification. The different theoretical methods hitherto used to investigate defects in 3C-SiC are critically reviewed. Classical MD simulations with a recently developed interatomic potential are employed to investigate the stability, structure and energetics of the large number of non-equivalent defects that may exist in 4H-SiC. Most of the potential defect configurations in 4H-SiC are found to be stable. The interstitials between hexagonal and trigonal rings, which do not exist in 3C-SiC, are characteristic for 4H-SiC and other hexagonal polytypes. The structure and energetics of some complex and anisotropic dumbbells depend strongly on the polytype. On the other hand, polytypism does not have a significant influence on the properties of the more compact and isotropic defects, such as vacancies, antisites, hexagonal interstitials, and many dumbbells. The results allow conclusions to be drawn about the energy hierarchy of the defects.
Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com
No comments:
Post a Comment