The hole transport properties of heavily doped 4H-SiC (Al) layers with Al implanted concentrations of 3  ×  1020 and 5  ×  1020 cm−3 and annealed in the temperature range 1950–2100 °C, have been analyzed to determine the main transport mechanisms. This study shows that the temperature dependence of the resistivity (conductivity) may be accounted for by a variable range hopping (VRH) transport into an impurity band. Depending on the concentration of the implanted impurities and the post-implantation annealing treatment, this VRH mechanism persists over different temperature ranges that may extend up to room temperature. In this framework, two different transport regimes are identified, having the characteristic of an isotropic 3D VRH and an anisotropic nearly 2D VRH. The latter conduction mechanism appears to take place in a rather thick layer (about 400 nm) that is too large to induce a confinement effect of the carrier hops. The possibility that an anisotropic transport may be induced by a structural modification of the implanted layer because of a high density of basal plane stacking faults (SF) in the implanted layers is considered. The interpretation of the conduction in the heaviest doped samples in terms of nearly 2D VRH is supported by the results of the transmission electron microscopy (TEM) investigation on one of the 5  ×  1020 cm−3 Al implanted samples of this study. In this context, the average separation between basal plane SFs, measured along the c-axis, which is orthogonal to the carrier transport during electrical characterization, appears to be in keeping with the estimated value of the optimal hopping length of the VRH theory. Conversely, no SFs are detected by TEM in a sample with an Al concentration of 1  ×  1019 cm−3 where a 3D nearest neighbor hopping (NNH) transport is observed.
Source:IOPscience
If you need more information about SiC 4H,please visit our website:www.qualitymaterial.net,and send us email at angle.ye@powerwaywafer.com or powerwaymaterial@gmail.com.